University of Duisburg - Essen

Some Ideas on Data Rate Reduction for Measurement Data Transmissions in Hierarchical Smart Grid Environments

Andreas Pillekeit Research Group Systems Modelling, ICB, University of Duisburg-Essen Andreas.Pillekeit@icb.uni-due.de

Aim

- Usage of regression models for reducing communication demands of measurement data transmissions
- Original time series of measured data is represented by a regression model
 - Lossy representation of time series!
 - Increased level of uncertainty!
- Only model parameters and a few additional parameters are transmitted
- Model is used to forecast behavior until next model parameter transmission

Environment

and Business Information Systems Research Group Systems Modeling

System Model Description Example Open Questions

System Model Description

- Example
- Open Questions

General System Model

Model Update Process

intended time horizon: sec up to hour

Institute for Computer Science and Business Information Systems Research Group Systems Modeling

Model Update Process - Commentary

- Data updates from meter represent time series at MUC
- Data update interval is not necessarily constant! (e.g. due to intelligent recording)
- Data updates within one data window are used to estimate regression model parameters and variance
- Model parameters are sent to higher level according to the model update interval (interval is not necessarily constant!)
- Model parameters are used to forecast behavior until next model update event
 - Short term forecasts! Intended time horizon is seconds up to hours

Implications Derived from Update Process

- Size of model parameters has to be smaller than size of time series information within one data window
 - Model update interval has to be large enough
 - Lossy model -> increased uncertainty
- Data window should cover enough data updates to obtain a sufficient time series for model parameter estimation
- Time series information can be reused for model parameter estimation (overlapping data windows)
 - Higher storage requirements in MUC
 - Model is less responsive to short term changes if overlapping window increases
- Forecast window should be shorter than data window to achieve sufficiently accurate forecasts
 - Short enough to be accurate and long enough to reduce data transfers sufficiently

Model Parameter Estimation

Regression model has to be defined in advance

- MUCs and higher levels have to know the model
- Necessary for merging parameters
- Straightforward combination of regression model parameters
 - Parameters merge like original data
 - Good for hierarchical system models (Smart Grid)
 - Low computational effort for merging
- Estimation of merged noise (variance) is more difficult
 - Solved by heuristic estimation of cross correlation based on model cross correlation and variance information

System Model Description Example Open Questions

Example Model

Linear model with additive seasonal variables

- Just as an example!
- b_i, s_i, c_i (slopes) & f (period frequency) are model parameters

• Time is the only modeled influence

- Other predictor variables can be integrated
- w_t noise information

$$x_{t} = b_{0} + b_{1}t + b_{2}t^{2} + \sum_{i=1}^{[f/2]} \left\{ s_{i} \sin\left(\frac{2\pi it}{f}\right) + c_{i} \cos\left(\frac{2\pi it}{f}\right) \right\} + w_{t}$$

Merging Process of Example

based on model cross correlation and variance of 1st and 2nd model

Institute for Computer Science

Research Group Systems Modeling

and Business Information Systems

UNIVERSITÄT I_S_B_U R G

ESSEN

DU

draft

Comparision of Models for Merged Data

Parameter match of merged model and model of original merged data

Parameter	Difference	Parameter	Difference
b0	-2.842171e-14	s3	-1.776357e-15
b1	-2.220446e-16	c4	1.776357e-15
b2	1.734723e-18	s4	-1.776357e-15
c1	7.105427e-15	c5	0.000000e+00
s1	-3.552714e-15	s5	2.331468e-15
c2	7.105427e-15	сб	1.776357e-15
s2	-4.440892e-16	s6	1.562500e-02
c3	7.105427e-15		

Model Forecast for Example Data at Higher Level

merged orig. data + model forecast (red)

- This forecast window has half the size of the data window
 - Forecast window should be shorter than data window
 - Relation depends on allowed uncertainty (to be investigated)

UNIVERSITÄT

SSEN

draft

nstitute for Computer Science nd Business Information Systems esearch Group Systems Modeling

Evaluation of Example

Comparison of mean and variance in data window (t)

Parameter	Merged original data	Merged Model
Mean	189.7	189.7
Variance (incl. noise)	2075.4	1949.6
Variance of noise	591.6*	465.82+

^(*) based on regression model residuals ⁽⁺⁾ estimated

Comparison of mean and variance in forecast window (t)

Parameter	Merged original data	Model forecast
Mean	203.3	211.2
Variance (incl. noise)	1810.7	1949.6
Variance of noise	n/a	465.82

draft

Merged model fits well in data window

- Forecast is reasonable but has to be improved
 - Different regression model
 - Additional/other influencing variables (predictors)
 - Shorter forecast window
 - Different heuristic for variance estimation

Original load time series needed to continue this work

System Model Description Example Open Questions

- What kind of <u>short term</u> forecast models are already in use?
 - Time horizon: seconds, minutes or hours
 - Level: per household or per village
- What are the important parameters?
 - How important is variance information?
 - What are the important influences (e.g. sunshine level, wind, temperature...)?
- Is it possible to get original load time series?
 - Measured data at meters, at MUCs and at higher levels to derive a well fitting regression model

20